Генотипическая изменчивость. Характеристика геномных и генных мутаций.

==================================

 

Генотипическую изменчивость подразделяют накомбинативную и мутационную.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Источниками комбинативной изменчивости служат три процесса:

1. независимое расхождение гомологичных хромосом в анафазе I мейоза. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян в F2 от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами – пример комбинативной изменчивости;

2. обмен участками гомологичных хромосом, или кроссинговер;

3. случайное сочетание гамет при оплодотворении.

Эти три источника комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перестановку» генов. В результате это приводит к появлению в фенотипе новых комбинаций признаков у гибридов. Структура генов при этом не изменяется.

Комбинативная изменчивость является важнейшим источником разнообразия живых организмов. 

Мутационная изменчивость. Мутации – это наследуемые изменения генетического материа­ла организмов. Изменчивость, вызванная возникновением мутаций, называется мутационной.

*Впервые термин «мутация» был предложен голландским ученым Гуго де Фризом в соем классическом труде «Мутационная теория» (1901–1903 гг.), основные положения которого до сих пор не утратили значения:

1. Мутации возникают внезапно как дискретные изменения признаков.

2. Мутации наследуются.

3. Они могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

4. Сходные мутации могут возникать неоднократно.

5. Мутации ненаправленны (спонтанны), то есть нельзя с достоверностью предсказать, какой именно ген будет мутировать под действием мутагенного фактора.*

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственные изменения признаков организма. Живые существа, изменившие свой фенотип в результате мутации, называются мутантами.

По изменению генетического материала мутации подразделяют на генные, хромосомные и геномные.

Генные, или точковые, мутации – результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена вследствие вставки, выпадения или замены нуклеотидов. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению каких-либо признаков организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Примером генной мутации служит серповидноклеточная анемия – заболевание человека, вызываемое заменой нуклеотида в одном из генов, ответственных за синтез гемоглобина.  При этом эритроциты теряют способность к транспорту кислорода и вместо округлой приобретают серповидную форму. Гомозиготы по гену серповидноклеточности гибнут при рождении.

Хромосомные мутации – это изменения в структуре хромосом. Хромосомные мутации подразделяют на внутрихромосомные и межхромосомные .

К внутрихромосомным мутациям относятся: выпадение участка хромосомы (делеции), двух- и многократные повторения фрагмента хромосомы (дупликации), поворот участка хромосомы на 180°, в результате чего гены в этом участке располагаются в обратной последовательности (инверсии).

К межхромосомным мутациям относят обмен участками между двумя негомологичными хромосомами (транслокации).

Геномные мутации – это изменение числа хромосом в клетках организма.

В основе таких нарушений лежит нерасхождение хромосом к полюсам клеток при мейозе или митозе. Это может быть вызвано действием различных физических и химических факторов на нити веретена деления, приводящим к разрушению отдельных или всех нитей.

Среди геномных мутаций выделяют полиплоидию и гетероплоидию.

Полиплоидия – это увеличение числа хромосом в клетках, кратное гаплоидному. При полиплоидии возникают триплоидные (Зn), тетраплоидные (4n), гексаплоидные (6n), октаплоидные (8n) и т.д. клетки. Полиплоидия распространена главным образом у растений.

Полиплоидные формы имеют крупные листья, цветки, плоды и семена (рис. ). Многие сорта культурных растений являются полиплоидными (пшеницы, ржи, сахарной свеклы, гречихи и др.).

Гетероплоидия (анеуплодия) – это изменение числа хромосом, не кратное гаплоидному. Гетероплоидия наблюдается тогда, когда во время митоза или мейоза не расходятся или теряются отдельные гомологичные хромосомы.

В результате при гаметогенезе могут возникать половые клетки с лишними хромосомами. При слиянии с нормальными гаметами они образуют зиготу 2n + 1 (трисомик по определенной хромосоме). Так, люди, страдающие болезнью  Дауна, являются трисомиками по 21-й хромосоме, поскольку они имеют в клетках одну лишнюю хромосому из 21-й пары.

В зависимости от того, в каких клетках произошли мутации, их подразделяют на соматические и генеративные.

Соматические мутации происходят в соматических клетках и проявляются у самой особи. Они передаются по наследству при вегетативном размножении и не наследуются при половом.

Генеративные мутации происходят в половых клетках и передаются при половом размножении.


По влиянию на жизненность и /или плодовитость особей мутации делят на:

летальные (обусловливают гибель мутантов);

полулетальные (снижают жизнеспособность мутантов, которые обычно не доживают до репродуктивного возраста);

нейтральные (не влияют на жизнеспособность и плодовитость организма);

полезные (повышают жизнеспособность и плодовитость особей).

По происхождению различают спонтанные и индуцированные мутации.



Значение генотипической изменчивости.

Мутации, как источники генотипической изменчивости, являются важнейшим фактором эволюции, обеспечивающей приспособленность популяций и видов к изменяющимся условиям среды.

Генотипическая изменчивость лежит в основе практической селекции при создании новых пород животных, сортов растений и штаммов микроорганизмов. Так, в настоящее время все мировое производство антибиотиков (например, пенициллина) основано на использовании мутантов, полученных под действием радиации или химических мутагенов.

Например, использование ионизирующих излучений в селекции растений позволило получить новые сорта пшеницы, ржи, ячменя, гороха и др.

Химические мутагены дали возможность получить полиплоидные растения, которые легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху.